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Overview

PHYSICAL AGING First introduced by Kovacs in 1963 to describe a phenomenon

over time as it moves toward thermodynamic equilibrium

that was later extensively studied by Struik in 1978
\ \) Process by which a material’s properties gradually change

AGING SHIFT FACTOR

& ﬂo Aging is NOT random

o\
FAST
(I IT) ) Asamaterial ages, it may deform
SLOW more slowly as its internal

CZ ) ) structure stabilizes

“MATrix LABoratory”

Programming language and numeric computing
environment developed by MathWorks.

<\ MATLAB
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Compliance - Load Time at 110°C

Modulus - Load Time at 110°C

Extracted data into a CSV file

= =i
/4 br 19 %% 11eC Dataset
5/2 br I I
7T %?Uh:w
T —¥—20 hr _ 18} i»\I % Read the CSV file I
2 & Datasetl1@C = '../[@3]-Raw_Data/Collected data/118C Dataset.csv'; I
g 0.65 - é 17r datall@C = readtable(Datasetl10C, 'ReadVariablelames’,false); :
E =
S 161 numPairs = width{datalleC) / 2; % Number of (X,Y) pairs |
0.6
15T | for i = 1:numPairs I
I % Extract X and ¥ columns for the current pair |
0% o fo 0° o X = datallec{:, 2*i-1}; % X column (odd index)
Load Time [s] Lcad‘l’ime[s] Y = datall@C{:, 2*i}; % Y column (even index) I
I
o2 ¢ Single Temperature up ju Multi Te % Sort X and re-order Y accordingly I
N ; [X_sorted, idx] = sort(X);
v 63-73°C 10 " o | Y _sorted = Y(idx); |
Nl 67-73°C
a
EE v EE I % Store the sorted data back into the table :
: . v 5 N [ data110C{:, 2%i-1} = X_sorted; I
& 10! * L \I datal18C{:, 2*i} = Y_sorted; I
@ * v @ end
g * ik :; v v v | |
_ o = o Z ol Iwritetable{datalleﬂ, '‘Dataset/DatalleC.xlsx’, 'WriteVariableNames', -Falge);l
— e . o o O EE O EE EE EE EE EE Em = = =
10% [ ¥ L
10° 10° 10'
Load Time [s] Load Time [s]
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C@ Determine the horizontal shift needed to align the aging curves with a reference curve

Reference curve as the one corresponding to

F . (fi . . o
I ﬁ_i:iezezﬁzai:r{“‘flgflrst one) I the lOWGSt aglng tlme, SpeCIflcally 5/1 6 hOU rs
I y_r"E‘F = y—data{:Jj-); \

% Shift Factor Calculation
I for j = 2:num_curves

. Aging shift factors for each test curve by

% Test curve

x_test = x_data(:,3);
y_test = y_data(:,3);

% Definition of RMS error function
rms_error o = @(a_T o) compute rms_error_o(a_ T o, x ref, x test);
rms_error_v = @(a_T v) compute_rms_error_v(a_T v, y_ref, y test); e

initial guess = 5;

% Minimize the RMS error with custom options
optimal_a T horizontal = fminsearch(rms_error_o, initial guess, options);
optimal a T vertical = fminsearch{rms_error_v, initial guess, options);
a T o store(:,j-1) = optimal_a T horizontal;
a T v store(:,j-1) = optimal a T vertical;

% Output

[
[
[
[
I % Initial guess for a_T
[
[
[
[
[

disp(['Optimal a T between reference curve 1 and curve ', num2str(j),' is:

I

I minimizing the root-mean-square (RMS) error
I between the reference and each curve

I . . .

| Horizontal and vertical shifts

I

I MATLAB’s fminsearch function to minimize

| the error

Y, num25tr|
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% Reference curve (first one)
I x_ref = x data(:,1);
v _ref = y data(:,1);

% Shift Factor Calculation
I for j = 2:num_curves
% Test curve
¥ _test = x data(:,3j);
y_test = y_data(:,]);

% Definition of RMS erpor function
rms_error_o = @(a_T o)) compute rms_error_o(a_T o, x ref, x test);
rms_error_v = @(a_T v)| compute_rms_error_v(a_T v, y_ref, y test);

% Initial guess for a_T
initial guess = 5;

% Minimize the RMS error with custom options

optimal_a T horizontal = fminsearch(rms_error_o, initial guess, options);
optimal a T vertical = fminsearch{rms_error_v, initial guess, options);

a T o store(:,j-1) optimal_a T horizontal;

a T v store(:,j-1) optimal a T vertical;

% Output

end

disp(['Optimal a T between reference curve 1 and curve ', num2str(j),' is:

Y, num25tr|

L————————————————————

{‘L@ Determine the horizontal shift needed to align the aging curves with a reference curve

———————————————————1

%% Function definition
function error = ccmpute_rms_erroP_v{a_T_v,y_ref,y_tESt}I
% Shift x data by a T I

l shifted v =y ref + a_ T v;

]

I % Compute the RMS error

| error = sqrit(mean(({shifted y - y_test)."2});
end

[
[
[
[
| function error = compute_rms_erroP_D(a_T_ﬂ,x_ref,x_test}I
I % Shift x data by a T
shifted x = x_ref + a_ T o; I
[
[
[
ol

[
ompute the RMS error
[ % Compute the RMS
I error = sgrit(mean((shifted x - x_test).”2));

Lfnd

n
1 2
RMS (ar) = |~ Z [ref(® = Xshifted ;]
i=1

V




o3 . Shifted Data (110°C - Compliance) 025 - Shifted Data (110°C - Modulus)
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0T 021 . .
g g Shifted curve to validate the
o o
o o .
T ore| T ot results obtained
02| 0.18
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1| Characterization of Isothermal Physical Aging P

Table 1. Aging shift factors and aging shift rate along the x-axis for the six datasets analyzed. The curves have been renamed, for simplicity,
according to the temperature they refer to, with “C"” indicating the creep compliance curve and “M" indicating the stress relaxation modulus.

Shift Factor Shift Rate
Plot Curves 1-2 Curves 1-3 Curves 1-4 Curves 1-5 Curves 1-6  Curves 1-7 along x
110C 0.1914 0.4429 0.7299 1.0111 1.3061 1.6119 -0.9467
110M 0.3185 0.6229 0.9227 1.2418 1.4899 1.7681 -0.9651
120C 0.1703 0.4385 0.7239 1.0155 1.3109 1.6150 -0.9617
120M 0.3210 0.6102 0.9187 1.1896 1.5174 1.8102 -0.9912
130C 0.1371 0.3052 0.5839 0.8471 1.1337 1.4436 -0.8809
130M 0.3013 0.5869 0.9206 1.1969 1.5039 1.8007 -0.9989




%% Fit the data
for j = 1:num_curves
x_cf = x_in(:,3);

yv_cf = y_in(:,3);
regression = fit(x_cf,y_cf, 'poly2');

g 1\

coeffs{:,j) = [regression.pl,regression.p2,regression.p3];

nd

m

% Laplace transformation
for k = 1:num_curves

SYyms ¥ s

% Define the creep compliance polynomial function
creep = coeffs(l,k)*x.*2+coeffs(2,k)*x + coeffs(3,k};

% Laplace transform of creep

E_laplace

% Inverse
D laplace

= laplace(creep,x,s);

Laplace relaticonship
= (1/((s."2)*E_laplace));

Dt sym = ilaplace(D laplace,s,x};

% Substitute x_in values into D(t) to get the creep compliance over time

D t vals
D_t(:,k)
end

double(subs(D_t_sym,x,x_in{:,k)));
D t vals;

% Reference creep data for comparison

B

I x_ref = x data c(:,1); 3
y_ref = y data_c(:,1);
| .

Calculate the theoretical creep compliance D(t) from experimentally measured
stress relaxation modulus E(t)

Fitted the stress relaxation modulus data for each curve
to a quadratic polynomial

Laplace transform relationship between modulus and
compliance

N ®

Comparison it with the experimental creep compliance
data
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Creep Compliance [F'a'1]

Creep Compliance

- Stress Relaxation Conversion (120°C)

® Computed Creep Compliance

> Experimental Creep Compliance 7 _><

% The calculated compliance began to
® X flatten out at both higher and lower times

1. Finite Time Effects
_7 o 2. Viscoelastic and Aging Effects

— 3. Mathematical Approximation
— - S | i ; i i i
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3| Long-term Nonisothermal Physical Aging

EFFECTIVE TIME THEORY —

Effective Time (A):
Accounts for the cumulative effects of aging

—

The theory works by transforming real time into "effective time", which reflects the material’s evolving state as it
undergoes aging.

_ dloga,(t) to u -
— Jlog - a.(t) = ot
3 t
D(t) = Dy - exp [(ﬁ) ] - 10 = [ a0 ax
T
0
G Predict the 20-hour long-term creep response using aging shift factors and effective time theory under

/ 'L:J‘ isothermal and nonisothermal conditions.




@) 3| Long-term Nonisothermal Physical Aging

o Tont

16 - Shift Factor (Isothermal) _
| Yy =DP1X T D2

—8— Experimental Data
16 F —#— Fitted Shift Factor
%%RegresTiof Yor Isothermal ShiTt FECtOFYRase .
4 <'Fitting_iso = fit(x_data_iso,y data_iso, 'polyl’'); 9
2t OB fomi saw~ Lfitting iso.pl _fitiing iso=p2ls=
.‘_f.m .| a_t_iso = coeffs_iso(1,1).*(x _data_iso) + coeffs_iso(1,2);
E 08 shift_rate_iso = - coeffs_iso(1,1);
& i a_u_iso_int = @(x) ((t@)./(t@ + x)).*(shift_rate_iso);
04 for i = 1:1ength(t_int)
0zl lambda_isa(i,1) = integral{a_u_iso_int,8,t_int{(i,1));
D t iso(i,1) = D8 * exp((lambda_iso(i,1)./tau)."beta);
%6 04 02 0 02 04 06 08 1 12 14 end
log(t)
%% RegresSIof For Nonisothermal SRift FActof7Rate me —
. Shift Factor (Nonisothermal) <'Fitting_nc:-ni5c: = fit(x_data_noniso,y data noniso, 'poly2'); D
—6— Experimental Data COCFFE™NOMES Qs Ehitting _noniso.pl,fifting nenises. p!ffiﬂing_noniso.p?»] 5
i —%-— Fitted Shift Pactor a_t noniso = (coeffs noniso(1,1)*(x_data noniso).”2 + ...
coeffs noniso(l,2)*x data_noniso + coeffs_noniso(l1,3));
08
~ shift rate noniso = - (2.%coeffs noniso(1l,1).*x data noniso + coeffs noniso(1,2));
§ 06 F a_u noniso = @(x) ((t0)./(t0+x)).~(-2.*coeffs _noniso(l,1).*x - coeffs nonisp(l1,2));
% 04 r for j = 1:1ength(t_int)
@ lambda_noniso(j,1) = integral(a_u_noniso,@,t_int(3j,1));
02r D_t noniso(j,1) = D_@ * exp((lambda_noniso(j,1)./tau)."beta);
end
ol
— 2
2 I ‘ : I | I 078 1 1?2 1?4 y — plx + pzx + p3

-0.6 0.4 -0.2 0 0.2 0.4 0.6
log(t)




3| Long-term Nonisothermal Physical Aging

o Tont

0 Shift Rate
v v v v v v v
A
0.8r %% Regression for Isothermal Shift Factor/Rate
& fitting iso = fit(x_data iso,y data iso, 'polyl');
07+ coeffs iso = [fitting iso.pl fitting iso.p2];
= A a_t_iso = coeffs_iso(1,1).*(x _data_iso) + coeffs_iso(1,2);
£ 06 — R R = -
% 4 ( sﬁft_rate_im = - coeffs_iso(l,?)é:
@ 05 . ?_U_Tﬂojt— @ee) dofetOd=/ (B £%))."(shift_rate_iso);
for i = 1:1ength(t_int)
047 * y T r— lambda_isa(i,1) = integral{a_u_iso_int,8,t_int{(i,1));
A D t iso(i,1) = D8 * exp((lambda_iso(i,1)./tau)."beta);
%6 04 02 0 02 04 05 08 1 12 14 end
log(t)

%% Regression for Nonisothermal Shift Factor/Rate

Shift Rate (Nonisothermal) fitting nonise = fit(x_data_noniso,y data_neoniso, 'poly2');

o coeffs _noniso = [fitting noniso.pl,fitting noniso.p2,fitting noniso.p3];
L a_t noniso = {(coeffs_noniso(l,1)*(x _data _noniso).”2 + ...
081 coeffs noniso(l,2)*x data_noniso + coeffs_noniso(l1,3));
L] —_—__—_________——___~

o ’Shift_rate_noniso = - (2.%coeffs _nonisa(l,1).*x_data_noniso + coeffs_noniso(l,!));:
%‘ * a_U noMisom= @éx) L(tAL. [E8+)) . ~(-2. *coeffs_nopisoll, 1) *x.z mfﬁa_nmism,ﬂ);
:f:a for j = 1:1ength(t_int)

05 @ lambda_noniso(j,1) = integral(a_u_noniso,@,t_int(3j,1));

D_t _noniso(j,1) = D_@ * exp((lambda_noniso(j,1)./tau)."beta);
osle end
. dloga,(t)
03 —

0 é t‘i (I:'» Eli 1‘0 1I2 1‘4 1I6 ‘IIS 2‘0 u = a log t

Time since last temperature jump
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%% Regression for Isothermal Shift Factor/Rate

fitting iso = fit(x_data iso,y data iso, 'polyl');
coeftfs_iso = [fitting iso.pl fitting iso.p2];

a_t_iso = coeffs_iso(1,1).*(x _data_iso) + coeffs_iso(1,2);

shift_rate_iso = - coeffs_iso(1,1);
a_u_iso_int = @(x) ((t@)./(t@ + x)).*(shift_rate_iso);

fori == :¥ength(tTint) ~ T T T e

—
( lambda_iso(i,1) = integral(a_u_iso_int,®,t_int(i,1)); 2

TDmmise(inl) 2.0_0.% exp((lapbda_isoli, 1)/ teu) =befa);

end

%% Regression for Nonisothermal Shift Factor/Rate
fitting nonise = fit(x_data_noniso,y data_neoniso, 'poly2');
coeffs _noniso = [fitting noniso.pl,fitting noniso.p2,fitting noniso.p3];
a_t noniso = {(coeffs_noniso(l,1)*(x _data _noniso).”2 + ...
coeffs noniso(l,2)*x data_noniso + coeffs_noniso(l1,3));

shift_rate noniso = - (2.*coeffs_noniso(l,1).*x _data noniso + coeffs _noniso(1,2));
a_u noniso = @(x) ((t0)./(t0+x)).~(-2.*coeffs _noniso(l,1).*x - coeffs nonisp(l1,2));

forg ==t:Femgf(t"Int) ~ T T e —
lambda_noniso(j,1) = integral(a_u_nonise,®8,t_int(j,1)); 0
~D_'l_-_n::swisti.{.j, L =D 0_* exp((lamhda_nonisa(jsd) .ﬂau'f"beta);

end




log Compliance (D)

3| Long-term Nonisothermal Physical Aging
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%% Regression for Isothermal Shift Factor/Rate

fitting iso = fit(x_data iso,y data iso, 'polyl');
coeftfs_iso = [fitting iso.pl fitting iso.p2];

a_t_iso = coeffs_iso(1,1).*(x _data_iso) + coeffs_iso(1,2);

shift_rate_iso = - coeffs_iso(1,1);
a_u_iso_int = @(x) ((t@)./(t@ + x)).*(shift_rate_iso);

for i = 1:1ength(t_int)
Lambdas imer(i5T) = integral(a_u_Tso_Tht, Tt "mt (s 1)), -
( D_t_iso(i,1) = D_@® * exp((lambda_iso(i,1)./tau)."beta); 2
~— -

end ——————————__

1072

10"
log(t)

10°

%% Regression for Nonisothermal Shift Factor/Rate
fitting nonise = fit(x_data_noniso,y data_neoniso, 'poly2');
coeffs _noniso = [fitting noniso.pl,fitting noniso.p2,fitting noniso.p3];
a_t noniso = {(coeffs_noniso(l,1)*(x _data _noniso).”2 + ...
coeffs noniso(l,2)*x data_noniso + coeffs_noniso(l1,3));

shift_rate noniso = - (2.*coeffs_noniso(l,1).*x _data noniso + coeffs _noniso(1,2));
a_u noniso = @(x) ((t0)./(t0+x)).~(-2.*coeffs _noniso(l,1).*x - coeffs nonisp(l1,2));

for j = 1:1ength(t_int)
1ambda:-r|o'|'|‘_l'soﬂ,1')-=ﬁtgg-raf(-a_tnoﬁso,ﬂ,tﬁnm,ﬁ-);- —
<D_t_n:::-ni5-::(j,1) =D@a* exp((lambda_noniso(j,l).itau).“betaﬁ b

end -———————————__
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