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Abstract

This study investigates the mechanical behavior of glassy polymers under physical aging by characterizing stress relaxation
modulus and creep compliance. Aging shift factors and rates were extracted using RMS error minimization to align aging
curves to a reference curve. The stress relaxation modulus data were fitted to quadratic polynomials, and viscoelastic
theory was applied to compute creep compliance via Laplace transforms. Both isothermal and nonisothermal aging models
were analyzed to predict long-term creep behavior.

However, the effective time theory, based on experimental data, was not able to mathematically capture the behavior
under nonisothermal conditions correctly due to limitations in the shift factor decay model. Results showed that aging shift
factors effectively describe the material's time-dependent behavior, with isothermal models providing robust predictions.

These findings enhance the understanding of physical aging and its impact on the viscoelastic properties of polymers,

offering insights for long-term material performance in engineering applications.
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1 Introduction

Physical aging profoundly impacts the mechanical behavior
of many engineering materials, including metallic glasses,
composites, and polymers. This phenomenon is particularly
critical in amorphous polymers, where the material transitions
between distinct states depending on its thermal history. At
temperatures above the glass transition temperature (7j),
amorphous polymers exist in a rubbery state, characterized
by sufficient molecular mobility to enable rapid attainment of
thermodynamic equilibrium after a temperature change [1].

However, when cooled below T, these materials enter
a non-equilibrium glassy state. In this state, molecular
rearrangements slow dramatically, and the material evolves
gradually toward equilibrium over time. The duration of this
evolution depends on how far the material’'s temperature lies
below T,, with the equilibration process becoming slower
as the temperature decreases further. During this process,
the material undergoes time-dependent changes in various
properties, including specific volume, enthalpy, mechanical
characteristics, and dielectric response.

The term physical aging was introduced to describe this
phenomenon, initially identified by Kovacs in 1963 and later
extensively studied by Struik in 1978 in the context of glassy
polymers. The prefix “physical” differentiates this reversible
process from chemical degradation or biological aging, both of
which involve irreversible changes in material composition or
structure.

Notably, physical aging can be erased entirely through a process
called rejuvenation, wherein heating the material above T}
restores it to its initial equilibrium state. This reversible nature
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makes physical aging a significant subject of study in materials
science, as it directly influences the mechanical stability and
reliability of engineering components.

Understanding the influence of physical aging on
the mechanical properties of materials requires precise
characterization, typically achieved through carefully designed
mechanical tests. These tests assess how mechanical behavior
evolves with aging time, thermal history, and applied stress or
strain conditions. Two fundamental techniques employed for
this purpose are creep tests and stress relaxation tests, each
offering unique insights into the time-dependent viscoelastic
properties of materials.

1.1 Creep Tests

Creep tests involve subjecting the material to a constant stress
(00) during a “load” step, followed by a “unload” step where the
applied stress is reduced to zero. During both phases, the strain
response is continuously monitored, allowing for the extraction
of viscoelastic properties at discrete aging times. To ensure
the aging state remains effectively constant during testing, the
duration of each load step is kept much shorter than the elapsed
aging time.

The strain contribution during a given load step is
determined by subtracting the extrapolated strain from the
previous unload step (Eunioad) from the measured strain (). The
momentary tensile compliance, D(t), is then defined as:

D(t) = M 7

t=te — tei

where t is the time elapsed since the start of the load step, and
te denotes the aging time at the onset of the load step.
This compliance data is often modeled using the shifted three-
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parameter Kohlrausch function:

D(t) = Do - exp [(i)ﬂ]

where Dy represents the initial compliance, 7 is the relaxation
time, and § is the shape parameter indicative of the distribution
of relaxation times. The Kohlrausch function effectively captures
the broad spectrum of relaxation dynamics characteristic of
glassy materials.

1.2 Stress Relaxation Tests

Stress relaxation tests provide a complementary approach to
creep tests, involving the application of a constant strain (g¢)
during each load step. The stress response is monitored over
time, typically decreasing during load steps and increasing during
unload steps. A critical distinction between stress relaxation
and creep tests is that, during the unload step, the strain is not
reduced to zero. This introduces compressive stresses, which
can lead to specimen buckling if not carefully managed.

The momentary modulus, E(t), is defined analogously to
compliance in creep tests:

U(t) — Ounload (t)

E(t) = -

where o (t) is the stress during the load step, Gunicad(t) is the
extrapolated stress from the previous unload step, and &g is the
strain responsible for the stress variation.

Similar to compliance, the modulus is often modeled using the
Kohlrausch function:

B(t) = Eo - exp [— (i)ﬁ}

where Ey, 7, and 3 represent the initial modulus, relaxation
time, and shape parameter, respectively.

Both test methods are performed under conditions designed

to minimize aging effects during the individual load steps,
ensuring that the observed responses reflect the material's aging
state at specific moments.
Collectively, these techniques enable the quantitative analysis
of physical aging effects, providing valuable insights into the
viscoelastic behavior, relaxation dynamics, and time-dependent
mechanical stability of glassy materials.

1.3 Effective Time Theory

Effective time theory provides a comprehensive framework
for analyzing the time-dependent mechanical behavior of
materials undergoing physical aging, particularly in the context
of isothermal and non-isothermal conditions [2].

This theory introduces the concept of effective time (), which
accounts for the cumulative effects of aging and enables the
prediction of long-term mechanical responses, such as creep or
stress relaxation, beyond the constraints of Momentary Master
Curve (MMC) measurements.

In an isothermal creep test, the material begins aging at
an initial aging time tco, defined as the time elapsed since the
material was quenched below the glass transition temperature
(Ty). At any later moment during the test, the aging time is
given by t. = tco +t, where t is the elapsed time from the onset
of the load step. As ¢ approaches or exceeds teo, deviations in
the material’s long-term response from its momentary behavior

become apparent due to the evolving aging state.
To capture this evolution, the reference aging time

te,ref = teO

is used to define the MMC, and a shift factor ae(¢) is introduced
to account for changes in the aging state. The shift factor is

expressed as:
teO #
e t) =
ac(?) (teo + t)

where p is the aging shift rate, reflecting the rate at which
material properties change with aging.

The effective time increment d\ for a real-time increment
dt is then given by:

dX = a.(t)dt

Integrating this expression over the total testing time yields the
total effective time A(t):

t
At) = J ae(§) d¢
0
Replacing the real time t with the effective time A(¢) in the
Kohlrausch model for compliance allows the long-term creep
response to be described as:

Dt D[<M>)]

where Dy is the initial compliance.

1.3.1 Non-Isothermal Aging and Shift Rate

Non-isothermal aging introduces additional complexity, as
the aging shift rate u*(£) becomes time-dependent due to
temperature variations. In such cases, the shift factor a.(t)
deviates from a simple log-linear relationship, and p*(£) must
account for the effects of temperature history.

The effective time for non-isothermal aging, \*(t), is
determined by:

with:

teo w* ()
o - (2

The shift rate u*(t) is defined as:

% dlog a.(t)

po(t) == dlogt.

where te = teo + t represents the aging time since the last
temperature jump.

Over long durations, p*(t) asymptotically approaches the
isothermal shift rate piso, demonstrating the “fading memory”
effect, wherein the material's behavior gradually reflects only
the current temperature conditions.

2 Method

2.1 Data Extraction

The graphs given represent the creep compliance, stress
relaxation modulus, and shift factors derived from short-term
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creep tests, each of which provides valuable insights into the
material’s response to thermal aging.

The MATLAB code (referred to the compliance graph at
110°C) presented in the Appendix A outlines the process of
extracting the raw data, organize it and replot it again for better
clarification.

The figures resulting from the MATLAB code, that will be
identical as the one provided, are included in Section 3.1 of the
Results.

2.2 Characterization of Isothermal Physical Aging

To investigate the material’'s behavior at different aging times
and temperatures, the aging shift factors and aging shift rates
were extracted by analyzing the stress-strain data provided in
Section 2.1.

The primary objective was to identify the horizontal shift
required to align the various aging curves with the reference
curve, thereby enabling a consistent comparison.

Firstly, the data is loaded from the Excel file obtained from
the script presented in the Appendix A. Each curve corresponds
to a different aging time. The data is then processed to extract
the logarithmic values of time and stress for each aging time.

x_data = zeros(limit_value,7);

y_data = zeros(limit_value,7);

%% Load DataSet

’>>..directory/Datal110C.xlsx’;

readtable (Dataset,’ReadVariableNames’,false);

Dataset =
data =
num_curves = width(data) / 2; 7 Number of curves
for i = 1l:num_curves

logil0(data{1:1limit_value,
logl0(data{1l:1limit_value,

x_data(:,i) =
y_data(:,i) =

2%i-1});
2%i});
end

To determine the aging shift factors, the horizontal and vertical
shifts are computed by minimizing the RMS error between the
reference curve and the other test curves.

The reference curve is taken as the first curve in the dataset
(with the lowest aging time). The RMS error function is defined
later for horizontal and vertical shifts, and the ‘fminsearch’
function is used to minimize the error and find the optimal shift
values.

%% BRMS Error Minimization
a_T_o_store = zeros(l,num_curves-1);
zeros (1,num_curves-1);

1log10([5/8 5/4 5/2 5 10 20]’);

a_T_v_store =
log_t_e =
options = optimset(’MaxFunEvals’, 10000,

’MaxIter’, 10000);

% Reference curve (first one)
x_data(:,1);
y_data(:,1);

x_ref =
y_ref =

% Shift
for j = 2:num_curves
% Test
Xx_test =

Factor Calculation

curve
x_data(:,j);
y_test = y_data(:,j);

% Definition of RMS error function

rms_error_o = Q(a_T_o) compute_rms_error_o(a_T_o, x_ref,
X_test);

rms_error_v = Q@(a_T_v) compute_rms_error_v(a_T_v, y_ref,
y_test);

% Initial guess for a_T
initial_guess = 5;

% Minimize the RMS error with custom options

48

optimal_a_T_horizontal = fminsearch(rms_error_o,
initial_guess, options);

optimal_a_T_vertical = fminsearch(rms_error_v,
initial_guess, options);

a_T_o_store(:,j-1) = optimal_a_T_horizontal;

a_T_v_store(:,j-1) = optimal_a_T_vertical;

% Output
disp([’0Optimal a_T between reference curve 1 and curve ’,
num2str(j),’ is: ’, num2str(optimal_a_T_horizontal)l)

end

For horizontal shifts a7, the shifted test curve
/
T; = (Zshifted, jtest, j )
is given by:
o
Tshifted,j = Ttest,j + AT

The RMS error for horizontal alignment is defined as:

n

1 . .
RMS, (aci)“) = E Z [-Tref(l) — Zshifted,j ('L)]2
i=1
In the same way, for the vertical shift:
TJI = (xtest,j ) yshifted,j)

v
Yshifted,j = Ytest,j + QT

RMS, (a}) = l Z [yref(i) — Yshifted, j (7')]2

i=1

3

The optimal shift factors are determined by minimizing the
respective RMS errors:

a7 = min RMS, (a7)
o

a7 = min RMS, (ay)
ar

Nelder-Mead
MATLAB as

This is achieved numerically using the
optimization algorithm, implemented in
‘fminsearch’.

After computing the aging shift factors, the shift
rate is determined by fitting the horizontal shift factors
(‘a_T_o_store’) to a linear regression model using ‘polyl’ (a
linear polynomial). The negative slope of the regression provides
the shift rate for each curve.

% Fit data to a linear regression model
fit(log_t_e, ’polyl’);
shift_rate = - regression.pl * ones(length(log_t_e));

regression = (a_T_o_store)’,

Three figures are generated to visualize the results (Section 3.2).
The first figure shows the shifted test curves, with the reference
curve and shifted curves overlaid. The second figure shows the
aging shift factors as a function of time, and the third figure
illustrates the shift rate.

%% Figure 1 - Shifted Curves

figure (1) ;
hold on;
set (gcf, ’Position’, [10, 220, 700, 500]);
% Plot - Referemce curve
plot(x_data(:,1), y_data(:,1), ’*r’, ’DisplayName’, ’Reference
Curve’,
’MarkerSize’, 8, ’LineWidth’, 1);
% Plot - Shifted curves

for k = 1:(num_curves-1)

% Plot the shifted test curves
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plot(x_data(:,k+1) - a_T_o_store(l,k),
a_T_v_store(1,k),
’LineWidth’, 1.5, ’DisplayName’,
, num2str (k+1)]1);

y_data(:,k+1) -
[’Shifted Curve ’
end

xlabel (’log(t)’);

ylabel(’Log Stress’);

title_srt = sprintf(’Shifted Data (%s)’,
title(title_srt);

title_setup);

legend (’show’, ’Location’, ’best’);
grid on;
hold off;
%% Figure 2 - a_T_o_store vs log_t_e
figure (2);
hold on;
set (gcf, ’Position’, [400, 320, 600, 430]);
plot(log_t_e, a_T_o_store, ’k.’, ’LineWidth’, 1.5, ’MarkerSize
>, 20,
’DisplayName’, ’Shift Factors (Horizontal)’);

title_srt2 = sprintf (’Shift Factors ()s)’,
title(title_srt2);

xlabel (’log(t)’);

ylabel (’Shift Factors (a_T)’);

grid on;

hold off;

title_setup);

A% Figure 3 - shift_rate vs log_t_e

figure (3);
hold on;
set (gcf, ’Position’, [900, 320, 600, 430]);
plot(log_t_e, shift_rate, ’g.’, ’LineWidth’, 1.5, ’MarkerSize’
, 20,
’DisplayName’, ’Shift Rate (Horizontal)’);

title_srt3 = sprintf (’Shift Rates (%s)’,
title(title_srt3);

xlabel (’log(t)’);

ylabel(’Shift Rate’);

grid on;

hold off;

title_setup);

As discussed previously, the RMS error function is defined at
the end of the script as follows:

%% Function definition

function error = compute_rms_error_v(a_T_v,y_ref,y_test)
% Shift z_data by a_T
shifted_y = y_ref+a _T_v;

the RMS error
sqrt (mean((shifted_y - y_test).”2));

% Compute
error =
end
function error = compute_rms_error_o(a_T_o,x_ref,x_test)
% Shift z_data by a_T
shifted_x = x_ref + a_T_o;

% Compute the RMS error
error = sqrt(mean((shifted_x - x_test).”2));

end

2.3 Relationship between Creep and Stress Relaxation

The goal of this script is to calculate the theoretical creep
compliance D(t) from experimentally measured stress relaxation
modulus E(t) using a mathematical relationship derived from
viscoelastic theory.

The script simply starts by clearing the workspace,
initializing variables and data loading.

A% Luigi
clc;

Casagrande

clear;
close all;
limit_value = 20;

title_setup = ’120°C’;

9

&

42

60

zeros (limit_value ,7);
y_data = zeros(limit_value,7);
x_data_c = zeros(limit_value,7);

x_data =

y_data_c = zeros(limit_value,7);
D_t=zeros (limit_value,7);

%% Load DataSet

Dataset_C = ’>..directory/Datal20C.xlsx’;

data_compliance = readtable(Dataset_C,’ReadVariableNames’,
false);

Dataset_M = ’>..directory/Data12OM.xlsx’;

data_modulus = readtable(Dataset_M,’ReadVariableNames’,false);

num_curves = width(data_modulus) / 2;
coeffs=zeros (3,num_curves) ;

% Number of curves

for i = 1:num_curves
x_data(:,i) = data_modulus{l:limit_value, 2*i-1};
y_data(:,i) = data_modulus{1l:limit_value, 2*i};
end
for i = 1:num_curves
x_data_c(:,i) = data_compliance{l:1limit_value, 2%i-1};
y_data_c(:,i) = data_compliance{l:1limit_value, 2*i};
end

The stress relaxation modulus data for each curve is fitted to a
quadratic polynomial:

E(t) = p1t’ + pat + ps

This is done using MATLAB's ‘fit ()’ function with a second-
order polynomial (‘poly2’). The coefficients p1, p2, and ps3 are
stored in the matrix ‘coeffs’.

x_in = x_data;

y_in = y_data;

X% Fit the data

for j = 1:num_curves
x_cf = x_in(:,j);
y_cf = y_in(:,3);

regression = fit(x_cf,y_cf,’poly2’);

coeffs(:,j) = [regression.pl,regression.p2,regression.p3];

end

Using viscoelastic theory, the Laplace transform relationship
between modulus and compliance is:

1

PO ES

where E(s) is the Laplace transform of E(t). For each curve,
the modulus E(t) is defined symbolically using the polynomial
coefficients. The script computes the Laplace transform E(s),
derives D(s) using the above formula, and applies the inverse
Laplace transform to find D(t).

% Laplace transformation
for k = 1l:num_curves
syms x s

% Define the creep compliance polynomial function
creep = coeffs(1,k)*x.72 + coeffs(2,k)*x + coeffs(3,k);
% Laplace transform of creep

E_laplace = laplace(creep,x,s);

% Inverse Laplace relationship
D_laplace = (1/((s."2)*E_laplace));
D_t_sym = ilaplace(D_laplace,s,x);

% Substitute z_in wvalues

compliance over time
D_t_vals = double(subs(D_t_sym,x,x_in(:,k)));
D_t(:,k) = D_t_vals;

into D(t) to get the creep

end

The computed creep compliance D(t) is compared with
experimental creep compliance data Des(t). The plot visualizes

Mechanical Properties of Polymers Vol. MSE6203J, Issue Assignment, p.(2024).
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both data sets to assess their agreement. The z-axis uses a
logarithmic scale to better represent the time range.

% Reference creep data for comparison

x_ref = x_data_c(:,1);

y_ref = y_data_c(:,1);

%% Plot

figure (1) ;

hold on;

set (gcf, ’Position’, [300, 320, 700, 450]);

plot(x_in(:, 1), D_t(:, 1), ’r.’, ’MarkerSize’, 25, ’LineWidth

>

1.5, ’DisplayName’, ’Computed Creep Compliance’);

plot (x_ref, y_ref, ’gx’, ’MarkerSize’, 10, ’LineWidth’, 1.5,
’DisplayName’, ’Experimental Creep Compliance’);

set (gca, ’XScale’, ’log’);

grid on;

xlabel (’Time [s]’);

ylabel(’Creep Compliance [Pa~{-1}]17);

title_srt = sprintf (’Creep Compliance - Stress Relaxation

Conversion (%s)’,
title(title_srt,
legend (’show’,

title_setup);
13);
‘northwest’);

’FontSize’,
>Location’,

hold off;

Again, as before, the results for this task are analysis in
Section 3.3.
2.4 Long-term Nonisothermal Physical Aging

The modeling process starts with initializing arrays to store the
variables, experimental data, and computed results.

zeros (7,1);
y_data_noniso = zeros(7,1);
x_data_iso = zeros(7,1);
y_data_iso = zeros(7,1);

x_data_noniso =

t_int=(linspace (1,50,1000))’;

zeros (length(t_int) ,1);
zeros (length(t_int) ,1);
zeros (length(t_int) ,1);

lambda_iso =
lambda_noniso =
D_t_noniso =

D_t_iso = zeros(length(t_int),1);
tau = 0.4425; / hr

D_0O = 0.460; % GPa

beta = 0.417;

t0 = 0.5;

%% Load DataSet
Dataset_noniso = ’>..directory/Multi_T_step.csv’;
data_noniso = readtable(Dataset_noniso,’ReadVariableNames’,
false);
% First curve from "Multi
3:9
x_data_noniso(i-2,1) =
y_data_noniso(i-2,1) =

step" graph (27-73-27-73)
for i =
logl0(data_noniso{i,1});
logl0(data_noniso{i,2});
end

Dataset_iso = ’>..directory/Single_T_step.csv’;
data_iso = readtable(Dataset_iso,’ReadVariableNames’,false);
% Isothermal
3:9
x_data_iso(i-2,1) =

curve from the "Single step” graph (73)
for i =
loglo0(data_iso{i,7});
y_data_iso(i-2,1) = loglO(data_iso{i,8});

end

Next, a linear regression is performed on the isothermal data
representing the shift factor and rate using the ‘fit ()’ function
with the ‘polyl’ option for a first-degree polynomial fit:

Y = p1x + p2

45
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The shift rate, piso, is determined as the negative of the slope
of the linear fit:

Miso = —P1
Subsequently, the shift factor, aging parameter, and creep
compliance are calculated using the formulas outlined in

Section 1.

%% Regression for Isothermal Shift Factor/Rate
fitting_iso = fit(x_data_iso,y_data_iso,’polyl’);
coeffs_iso = [fitting_iso.pl fitting_iso.p2];
a_t_iso = coeffs_iso(1,1).*(x_data_iso) + coeffs_iso(1,2);
shift_rate_iso = - coeffs_iso(1,1);

a_u_iso_int = @(x) ((t0)./(t0 + x)). (shift_rate_iso);

for i = 1:length(t_int)
lambda_iso(i,1) = integral(a_u_iso_int,0,t_int(i,1));
D_t_iso(i,1) = D_0 * exp((lambda_iso(i,1)./tau). beta);
end

Simultaneously, a quadratic regression is performed on the
nonisothermal data:

Y =pll’2 + p2x + p3

The shift rate is again determined as the negative of the first
derivative of the fitted polynomial:

_ dlogac ()

= (2
dlogx (P12 + p2)

Hnoniso (-T) =

The shift factor, aging parameter, and creep compliance are then
calculated using the formulas already presented in Section 1:

¢ —(2p1z+p2)
0
Qnoniso = (m)

t

QAnoniso
0

Anoniso =

AnonEo s
Dioniso = Do - exp -

The resulting script for the nonisothermal analysis is as follows:

%% Regression for Nonisothermal Shift Factor/Rate

fitting_noniso = fit(x_data_noniso,y_data_noniso,’poly2’);

coeffs_noniso = [fitting_noniso.pl,fitting_noniso.p2,
fitting_noniso.p3];

a_t_noniso = (coeffs_noniso(1,1)*(x_data_noniso). 2+
coeffs_noniso(1,2)*x_data_noniso+coeffs_noniso(1,3));

shift_rate_noniso = - (2.*coeffs_noniso(1,1).*x_data_noniso +

coeffs_noniso(1,2));

@(x) ((t0)./(t0+x))."(-2.*xcoeffs_noniso(1,1).*xx -

coeffs_noniso(1,2));

a_u_noniso =

for j = 1:length(t_int)

lambda_noniso (j,1)

D_t_noniso(j,1) =
beta);

= integral(a_u_noniso,0,t_int(j,1));
D_0 * exp((lambda_noniso(j,1)./tau).”

end

As usual, the results were plotted to visualize the findings; an
example of the plot is shown below.

% Effective time ws. Real time

figure (6);

set (gcf, ’Position’, [510, 320, 600, 430]);

hold on;

plot (t_int, lambda_iso, ’b-’, ’LineWidth’, 2.5, ’DisplayName’,
>Isothermal’);

plot(t_int, lambda_noniso, ’r-’, ’LineWidth’, 2.5, °

DisplayName’, ’Nonisothermal’);
title (’Effective time vs.
xlabel (’Real Time [h]’);
ylabel(’\lambda’);
legend (’show’, ’Location’,

Real time’, ’FontSize’, 13);

‘northwest’);
grid on;
hold off;
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3 Results

From the MATLAB script provided in Section 2, these are
examples of the resulting data and figures obtained from the
simulation.

3.1 Data Extraction

Creep Compliance graphs illustrates the material’s compliance
behavior at various aging times and temperatures, revealing
how it deforms over time under constant stress. It allows for an
assessment of the material’s long-term strain behavior under
elevated temperatures.

Compliance - Load Time at 110°C
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Stress Relaxation Modulus graphs shows the stress relaxation
characteristics at different aging times and temperatures. It
demonstrates how the material’s internal stresses relax over
time, highlighting its stiffness and recovery properties under
thermal exposure.

Modulus - Load Time at 110°C
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The third graphs presents the aging shift factors obtained from
short-term creep tests, in particular for a single jump and multi-
temperature jumps. These factors are critical for predicting long-
term material behavior, especially in non-isothermal conditions.
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3.2 Characterization of Isothermal Physical Aging

The aging shift factors and shift rates for all six datasets
(three temperatures and two datasets, compliance and modulus)
were determined using the RMS error minimization technique
described in Section 2.2.

The Table 1 list the calculated aging shift factors and
corresponding shift rates for each dataset.
For the six curves, three graphs each were obtained:

e Shifted Data (log Stress vs. log Time)

This plot demonstrates the alignment of the aging curves
after applying the calculated horizontal and vertical shift
factors.

The reference curve (lowest aging time) was chosen as the
anchor, and subsequent curves were shifted horizontally and
vertically to minimize the RMS error.

e Aging Shift Factors (log Time vs. Shift Factor) This plot
displays the calculated aging shift factors as a function of
aging time in a log-log space.

The linear trend observed in each dataset reflects the
logarithmic dependence of aging shift factors on time,
consistent with the theoretical framework.

e Aging Shift Rates (log Time vs. Shift Rate) The aging
shift rates, derived from the slope of the shift factor vs. log
aging time, are plotted in this figure.

These rates indicate the speed at which the material’s
properties evolve with aging.
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Table 1. Aging shift factors and aging shift rate along the z-axis for the six datasets analyzed. The curves have been renamed, for simplicity,
according to the temperature they refer to, with “C” indicating the creep compliance curve and “M" indicating the stress relaxation modulus.

Shift Factor Shift Rate

Plot Curves 1-2 Curves 1-3  Curves 1-4 Curves 1-5 Curves 1-6  Curves 1-7 along =

110C 0.1914 0.4429 0.7299 1.0111 1.3061 1.6119 -0.9467
110M 0.3185 0.6229 0.9227 1.2418 1.4899 1.7681 -0.9651
120C 0.1703 0.4385 0.7239 1.0155 1.3109 1.6150 -0.9617
120M 0.3210 0.6102 0.9187 1.1896 1.5174 1.8102 -0.9912
130C 0.1371 0.3052 0.5839 0.8471 1.1337 1.4436 -0.8809
130M 0.3013 0.5869 0.9206 1.1969 1.5039 1.8007 -0.9989
3.2.1 Creep Compliance at 110°C 3.2.2 Creep Compliance at 120°C
This figures demonstrates the alignment of the aging curves for This figures demonstrates the alignment of the aging curves for
creep compliance after applying the necessary horizontal shifts. creep compliance after applying the necessary horizontal shifts.
The shift factor at 110°C is also shown. The shift factor at 120°C is also shown.
o1 Shifted Data (110°C - Compliance) oiar Shifted Data (120°C - Compliance)
oy Z 2 e
== atof|_—giecnes Y
2 22 0.2 0.4 0.6 0.8 1 IOWQ(Z[) 14 16 1.8 2 22
18 Shift Factors (110°C - Compliance) 18 Shift Factors (120°C - Compliance)
0.4 0.2 0 0.2 OAIOQ(‘)O 6 0.8 1 1.2 14 -0.4 0.2 0 0.2 04Icg(|)0 6 0.8 1 12 14
05 Shift Rates (110°C - Compliance) 05 Shift Rates (120°C - Compliance)
0.4 0.2 0 0.2 D4lcg(|)0.5 0.8 1 1.2 14 0.4 0.2 0 0.2 04|09(|)O 6 0.8 1 1.2 14
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3.2.3 Creep Compliance at 130°C

This figures demonstrates the alignment of the aging curves for
creep compliance after applying the necessary horizontal shifts.

The shift factor at 130°C is also shown.
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3.2.4 Stress Relaxation Modulus at 110°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal

shifts. The shift factor at 110°C is also shown.
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3.2.5 Stress Relaxation Modulus at 120°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal

shifts. The shift factor at 120°C is also shown.
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3.2.6 Stress Relaxation Modulus at 130°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal

shifts. The shift factor at 130°C is also shown.
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3.3 Relationship between Creep and Stress Relaxation

From the script presented in Section 2.3, the graphs obtained
for 120°C is shown below.

This graph compare the computed creep compliance, derived
from the stress relaxation modulus data, with the experimental
creep compliance.
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3.4 Long-term Nonisothermal Physical Aging

The shift rate for both conditions is shown, illustrating the rate
at which the material undergoes aging under different thermal
regimes.
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The fitted shift factors for isothermal and nonisothermal aging
are also provided, highlighting the distinct behaviors of the
material over time.
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The creep compliance for both isothermal and nonisothermal
conditions is plotted in a log-log scale, allowing for an assessment
of the material’s time-dependent viscoelastic properties.

Creep Compliance
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045 |
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035
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log Compliance (D)
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Finally, the comparison between effective time and real time
for both isothermal and nonisothermal conditions highlights the
influence of the aging process on the material’s behavior with
respect to the time scale under varying thermal conditions.
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Effective time vs. Real time
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4 Discussion & Conclusion
4.1 Characterization of Isothermal Physical Aging

The results presented in Section 3.2 (Table 1) confirm the
validity of the isothermal physical aging characterization method,
which was applied to both creep compliance and stress relaxation
modulus data sets. The aging shift factors, determined by
minimizing the root-mean-square (RMS) error upon horizontal
shifting, show that the curves for different aging times effectively
overlap when shifted. This confirms that the aging shift factors
provide a consistent way to describe the changes in the material’s
behavior due to aging, demonstrating the robustness of the
approach.

For both the creep compliance D(t) and the stress
relaxation modulus G(t), the aging shift factors a: plotted
against the logarithm of time exhibit a linear relationship,
expressed mathematically as:

log(a:) = m - log(t) + ¢

where m is the slope (shift rate) and c is the intercept. This
indicates that the shift factor scales predictably with the
logarithmic aging time, which is a hallmark of physical aging in
polymer materials.

The shift factor a; is fundamentally connected to molecular
mobility, representing how the effective time scale of molecular
relaxation changes as the material undergoes aging. The
observed linear dependence suggests that the underlying physical
processes, such as molecular rearrangement and redistribution of
free volume, occur at a consistent rate, leading to a uniform time-
scale transformation. This is consistent with the principles of
physical aging, where material properties evolve logarithmically
with time.

Additionally, when the shift rate

0log(at)

b= T Blog(t)
is calculated and plotted against log(t), it appears as a horizontal
line:

44 = constant

This constant behavior implies that the aging process does not
deviate over time, reinforcing the notion of a stable and uniform
transformation of the material’s time scales.

4.2 Relationship between Creep and Stress Relaxation

The goal was to convert the stress relaxation modulus data
at 120°C to creep compliance using the established theoretical
relationship between stress relaxation and creep compliance.
This was achieved by applying the Laplace transform to the
stress relaxation modulus and then obtaining the corresponding
creep compliance as a function of time (as detailed in
Section 2.3).

While the calculated creep compliance results show a similar
trend as the experimental creep data, the curves slightly diverge,
with the calculated creep compliance starting to flatten out at
both higher and lower times.

This discrepancy can be attributed to several factors related
to the underlying physical processes governing stress relaxation
and creep in polymers:

a. Finite Time Effects: Experimental data may reflect
prolonged molecular rearrangements and stress relaxation
over time, which are not fully captured in the stress
relaxation modulus data. The calculated curve’s flattening
may indicate a faster equilibrium state than observed
experimentally.

b. Viscoelastic Behavior and Aging Effects: Time-dependent
phenomena like physical aging or time-temperature
superposition can alter the relaxation modulus over time,
causing deviations in creep compliance predictions. These
effects are often not included in simplified theoretical
models.

c. Mathematical Approximation Limitations: The Laplace
transform relies on approximations, such as assuming
constant or ideal relaxation times, which may not accurately
represent the viscoelastic response of polymers. This
simplification could explain the observed flattening in the
calculated compliance.

4.3 Long-term Nonisothermal Physical Aging

The fit for the isothermal model was quite accurate, confirming
that under constant temperature conditions, the aging shift
factor does not change with time, but instead behaves in a
manner consistent with the Kohlrausch function parameters.
The consistency of the shift factor in the isothermal case makes
sense, as the material experiences the same temperature, so
the rate of aging does not need to adjust for temperature
fluctuations.

In contrast, the nonisothermal prediction involved the
application of a temperature-dependent aging shift factor. In the
graphs shown in Section 3.4, as the material undergoes thermal
cycling, the shift factor adjusts in a linear fashion, as opposed to
the constant behavior in the isothermal case. This is because, in
nonisothermal conditions, the aging of the material is influenced
not just by the cumulative time spent at each temperature, but
also by the transitions between temperatures, leading to a more
complex and temperature-sensitive shift factor.

The creep compliance was analyzed in log-log space for
both isothermal and nonisothermal conditions:

e Isothermal Case: The creep compliance under isothermal
conditions exhibited the expected growing trend, which is
a characteristic of viscoelastic materials experiencing time-
dependent deformation. This growing behavior reflects the
material's continued response to stress over time, with the
compliance increasing as the material undergoes more creep
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deformation. This is consistent with the idea that, at constant
temperature, the material’s response follows the usual time-
dependent creep pattern, where compliance increases as time
progresses.

e Nonisothermal Case: In the nonisothermal case, the creep
compliance initially increased in a manner similar to the
isothermal case, but then it reached a plateau after a certain
period. This plateau suggests that the creep compliance was
limited by the material's temperature cycling.

A more careful investigation reveals that the issue stems from
the fitting method used in MATLAB's ‘poly2’ interpolation,
specifically with the decay of the shift function a,. The
rapid decay of a, is due to an overfitted exponential decay
term, causing a,, to decay too quickly. As a result, when a,,
is integrated to compute the effective time A, the integral
plateaus, as the value of a,, reaches zero after a certain point
(see the Figure below).

This behavior is not a physical limitation of the material but
a mathematical issue arising from the fitting procedure. The
rapid decay of a, is a result of the specific data and the
chosen fitting model, not the material’s intrinsic properties.
In reality, the creep compliance in a nonisothermal system
should grow exponentially at first, influenced by increasing
temperature, but should eventually reach a steady-state creep
rate where the compliance stabilizes, due to the balance
between deformation and recovery mechanisms (which are
temperature-dependent).

The plateau observed in A is simply a consequence of the
incorrect behavior of a, under the current fitting model.

The second-order polynomial fit was chosen because it provides
a smoother, less extreme variation that avoids the rapid decays
or blow-ups associated with exponential functions, allowing for
more stable integration, compared to an exponential one.
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The relationship between effective time and real time was
also explored to better understand the material's creep response
under both isothermal and nonisothermal conditions.

e Isothermal Case: In the isothermal scenario, the relationship

between real time and effective time follows the expected
trend, with a logarithmic-like increase.
This logarithmic behavior arises because the aging shift
factor is a function of time, and in isothermal conditions,
the material’s response to stress becomes progressively slower
as time increases.

e Nonisothermal Case: In contrast, for the nonisothermal case,

the effective time initially grows as expected but then quickly
plateaus. This rapid leveling off of effective time is definitely
due to the same issue encountered in the creep compliance
fit — namely, the inappropriate decay of the aging shift factor
in the fitting procedure.
The overestimated decay rate of a,, leads to an overestimated
aging shift factor, causing the effective time to quickly
stabilize. In theory, the effective time should continue
increasing as the material responds to the varying temperature
over time, but this fast plateau prevents a true reflection of
the temperature cycling's impact on the material.

For nonisothermal conditions, as the material undergoes cyclic
temperature changes, the effective time should eventually closely
align with real time. This is because, at long times, the effect
of previous thermal history should become negligible, and the
material would reach a steady-state deformation rate regardless
of the specific thermal history.

Hence, while the effective time may initially deviate due to
temperature fluctuations, it should eventually coincide with the
real time in long-term creep.
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Appendix A: DATA EXTRACTION 74

%% Luigi Casagrande 7
clc; 7
clear; 7
close all; 80

temps = [110,
aging_times =

120, 1301;

[6/16, 5/8, 5/4, 5/2, 5, 10, 20];

%% 110C Dataset

% Read the CSV file

Dataset110C = ’>..directory/110C_Dataset.csv’;

datall10C = readtable(Dataset110C,’ReadVariableNames’,false);
numPairs =

width (datal10C) / 2; % Number of (X,Y) pairs

for i = 1:numPairs
% Extract X and Y columns for the current pair
X = datal110C{:, 2xi-1}; 7% X column (odd indez)
Y = datal10C{:, 2*i}; % Y column (even indez)
% Sort X and re-order Y accordingly
[X_sorted, idx] = sort(X);
Y_sorted = Y(idx);
% Store the sorted data back into the table
datal110C{:, 2*xi-1} = X_sorted;
datal10Cq{:, 2xi} =
end

Y_sorted;

writetable (datal10C,
WriteVariableNames’,

’DataSet/Datal10C.x1lsx’, ’
false);

% Eztract datasets

% ’5/16 hr’ data

x1110C = datal110C{1:20,
y1110C = datal110C{1:20,
% ’5/8 hr’ data

x2110C = datal110C{1:end,
y2110C = datal10C{1l:end,
% ’5/4 hr’ data

x3110C = datal10C{1:end,
y3110C = datal110C{1:end,
% ’5/2 hr’ data

x4110C = datal110C{1:end,
y4110C = data110C{1:end,
% ’5 hr’ data

x5110C = datal10C{1:end,
y5110C = datal10C{1l:end,
% °10 hr’ data

x6110C = datal110C{1:end,
y6110C = datal10C{1l:end,
% 20 hr’ data

x7110C = datal10C{1:end,
y7110C = datal10C{1:end,

1};
2};

3};
4};

5};
6};

7};
8};

9};
10};

11};
12};

13};
14%};

% Plot Creation

figure (1) ;

set (gcf,
position

set (gca, ’XScale’,

hold on;

’Position’, [10, 320, 600, 430]); /% Adjust the size &

’log’); % Logaritmic z-azis

% Plot each dataset

plot(x1110C, yi1110C,
LineWidth’, 1.2,

plot(x2110C, y2110C,
>, 1.2, ’MarkerSize’,

plot (x3110C, y3110C, ’-p’,
>, 1.2, ’MarkerSize’,

plot(x4110C, y41i10C,
>, 1.2, ’MarkerSize’, 8);

plot (x5110C, y5110C, ’-d’, ’DisplayName’,

1.2, ’MarkerSize’, 8);

plot (x6110C, y6110C, ’-"’, ’DisplayName’,
, 1.2, ’MarkerSize’, 8);

plot (x7110C, y7110C, ’DisplayName’
, 1.2, ’MarkerSize’, 8);

’-s’, ’DisplayName’, ’5/16 hr’,
’MarkerSize’, 8);
’DisplayName’,
8);
’DisplayName’,
8);
’DisplayName’

’-o’, ’5/8 hr’, ’LineWidth

’6/4 hr’, ’LineWidth

-v, , ’5/2 hr’, ’LineWidth

’5 hr’, ’LineWidth’,

10 hr’, ’LineWidth’

Tk, , 720 hr’, ’LineWidth’

% Customize the plot
xlabel(’Load Time [s]’);
ylabel (’Compliance [1/Gpal’);
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xlim ([1,
ylim([0.55,

1e41); % X-azis range
0.751); % Y-azis range

legend (’show’, ’Location’, ’northwest’);
grid on;

title(’Compliance - Load Time at 110°C’,
legend;

hold off;

>FontSize’,

13);




