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Abstract
This study investigates the mechanical behavior of glassy polymers under physical aging by characterizing stress relaxation
modulus and creep compliance. Aging shift factors and rates were extracted using RMS error minimization to align aging
curves to a reference curve. The stress relaxation modulus data were fitted to quadratic polynomials, and viscoelastic
theory was applied to compute creep compliance via Laplace transforms. Both isothermal and nonisothermal aging models
were analyzed to predict long-term creep behavior.
However, the effective time theory, based on experimental data, was not able to mathematically capture the behavior
under nonisothermal conditions correctly due to limitations in the shift factor decay model. Results showed that aging shift
factors effectively describe the material’s time-dependent behavior, with isothermal models providing robust predictions.
These findings enhance the understanding of physical aging and its impact on the viscoelastic properties of polymers,
offering insights for long-term material performance in engineering applications.
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1 Introduction

Physical aging profoundly impacts the mechanical behavior
of many engineering materials, including metallic glasses,
composites, and polymers. This phenomenon is particularly
critical in amorphous polymers, where the material transitions
between distinct states depending on its thermal history. At
temperatures above the glass transition temperature (Tg),
amorphous polymers exist in a rubbery state, characterized
by sufficient molecular mobility to enable rapid attainment of
thermodynamic equilibrium after a temperature change [1].

However, when cooled below Tg, these materials enter
a non-equilibrium glassy state. In this state, molecular
rearrangements slow dramatically, and the material evolves
gradually toward equilibrium over time. The duration of this
evolution depends on how far the material’s temperature lies
below Tg, with the equilibration process becoming slower
as the temperature decreases further. During this process,
the material undergoes time-dependent changes in various
properties, including specific volume, enthalpy, mechanical
characteristics, and dielectric response.

The term physical aging was introduced to describe this
phenomenon, initially identified by Kovacs in 1963 and later
extensively studied by Struik in 1978 in the context of glassy
polymers. The prefix “physical” differentiates this reversible
process from chemical degradation or biological aging, both of
which involve irreversible changes in material composition or
structure.
Notably, physical aging can be erased entirely through a process
called rejuvenation, wherein heating the material above Tg

restores it to its initial equilibrium state. This reversible nature
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makes physical aging a significant subject of study in materials
science, as it directly influences the mechanical stability and
reliability of engineering components.

Understanding the influence of physical aging on
the mechanical properties of materials requires precise
characterization, typically achieved through carefully designed
mechanical tests. These tests assess how mechanical behavior
evolves with aging time, thermal history, and applied stress or
strain conditions. Two fundamental techniques employed for
this purpose are creep tests and stress relaxation tests, each
offering unique insights into the time-dependent viscoelastic
properties of materials.

1.1 Creep Tests

Creep tests involve subjecting the material to a constant stress
(σ0) during a “load” step, followed by a “unload” step where the
applied stress is reduced to zero. During both phases, the strain
response is continuously monitored, allowing for the extraction
of viscoelastic properties at discrete aging times. To ensure
the aging state remains effectively constant during testing, the
duration of each load step is kept much shorter than the elapsed
aging time.

The strain contribution during a given load step is
determined by subtracting the extrapolated strain from the
previous unload step (εunload) from the measured strain (ε). The
momentary tensile compliance, Dptq, is then defined as:

Dptq “
εptq ´ εunloadptq

σ0
, t “ te ´ tei

where t is the time elapsed since the start of the load step, and
te denotes the aging time at the onset of the load step.
This compliance data is often modeled using the shifted three-
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parameter Kohlrausch function:

Dptq “ D0 ¨ exp
«

ˆ

t

τ

˙β
ff

where D0 represents the initial compliance, τ is the relaxation
time, and β is the shape parameter indicative of the distribution
of relaxation times. The Kohlrausch function effectively captures
the broad spectrum of relaxation dynamics characteristic of
glassy materials.

1.2 Stress Relaxation Tests

Stress relaxation tests provide a complementary approach to
creep tests, involving the application of a constant strain (ε0)
during each load step. The stress response is monitored over
time, typically decreasing during load steps and increasing during
unload steps. A critical distinction between stress relaxation
and creep tests is that, during the unload step, the strain is not
reduced to zero. This introduces compressive stresses, which
can lead to specimen buckling if not carefully managed.

The momentary modulus, Eptq, is defined analogously to
compliance in creep tests:

Eptq “
σptq ´ σunloadptq

ε0

where σptq is the stress during the load step, σunloadptq is the
extrapolated stress from the previous unload step, and ε0 is the
strain responsible for the stress variation.
Similar to compliance, the modulus is often modeled using the
Kohlrausch function:

Eptq “ E0 ¨ exp
«

´

ˆ

t

τ

˙β
ff

where E0, τ , and β represent the initial modulus, relaxation
time, and shape parameter, respectively.

Both test methods are performed under conditions designed
to minimize aging effects during the individual load steps,
ensuring that the observed responses reflect the material’s aging
state at specific moments.
Collectively, these techniques enable the quantitative analysis
of physical aging effects, providing valuable insights into the
viscoelastic behavior, relaxation dynamics, and time-dependent
mechanical stability of glassy materials.

1.3 Effective Time Theory

Effective time theory provides a comprehensive framework
for analyzing the time-dependent mechanical behavior of
materials undergoing physical aging, particularly in the context
of isothermal and non-isothermal conditions [2].
This theory introduces the concept of effective time (λ), which
accounts for the cumulative effects of aging and enables the
prediction of long-term mechanical responses, such as creep or
stress relaxation, beyond the constraints of Momentary Master
Curve (MMC) measurements.

In an isothermal creep test, the material begins aging at
an initial aging time te0, defined as the time elapsed since the
material was quenched below the glass transition temperature
(Tg). At any later moment during the test, the aging time is
given by te “ te0 ` t, where t is the elapsed time from the onset
of the load step. As t approaches or exceeds te0, deviations in
the material’s long-term response from its momentary behavior

become apparent due to the evolving aging state.
To capture this evolution, the reference aging time

te,ref “ te0

is used to define the MMC, and a shift factor aeptq is introduced
to account for changes in the aging state. The shift factor is
expressed as:

aeptq “

ˆ

te0

te0 ` t

˙µ

where µ is the aging shift rate, reflecting the rate at which
material properties change with aging.

The effective time increment dλ for a real-time increment
dt is then given by:

dλ “ aeptq dt

Integrating this expression over the total testing time yields the
total effective time λptq:

λptq “

ż t

0
aepξq dξ

Replacing the real time t with the effective time λptq in the
Kohlrausch model for compliance allows the long-term creep
response to be described as:

Dptq “ D0 ¨ exp
«

ˆ

λptq

τ

˙β
ff

where D0 is the initial compliance.

1.3.1 Non-Isothermal Aging and Shift Rate

Non-isothermal aging introduces additional complexity, as
the aging shift rate µ˚

pξq becomes time-dependent due to
temperature variations. In such cases, the shift factor aeptq
deviates from a simple log-linear relationship, and µ˚

pξq must
account for the effects of temperature history.

The effective time for non-isothermal aging, λ˚
ptq, is

determined by:

λ˚
ptq “

ż t

0
aepξq dξ

with:

aepξq “

ˆ

te0

te0 ` ξ

˙µ˚pξq

The shift rate µ˚
ptq is defined as:

µ˚
ptq “ ´

d log aeptq

d log te

where te “ te0 ` t represents the aging time since the last
temperature jump.
Over long durations, µ˚

ptq asymptotically approaches the
isothermal shift rate µiso, demonstrating the “fading memory”
effect, wherein the material’s behavior gradually reflects only
the current temperature conditions.

2 Method

2.1 Data Extraction

The graphs given represent the creep compliance, stress
relaxation modulus, and shift factors derived from short-term
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creep tests, each of which provides valuable insights into the
material’s response to thermal aging.

The MATLAB code (referred to the compliance graph at
110°C) presented in the Appendix A outlines the process of
extracting the raw data, organize it and replot it again for better
clarification.

The figures resulting from the MATLAB code, that will be
identical as the one provided, are included in Section 3.1 of the
Results.

2.2 Characterization of Isothermal Physical Aging

To investigate the material’s behavior at different aging times
and temperatures, the aging shift factors and aging shift rates
were extracted by analyzing the stress-strain data provided in
Section 2.1.

The primary objective was to identify the horizontal shift
required to align the various aging curves with the reference
curve, thereby enabling a consistent comparison.

Firstly, the data is loaded from the Excel file obtained from
the script presented in the Appendix A. Each curve corresponds
to a different aging time. The data is then processed to extract
the logarithmic values of time and stress for each aging time.

9 x_data = zeros ( limit_value ,7);
10 y_data = zeros ( limit_value ,7);
11
12 %% Load DataSet
13 Dataset = ’ >.. directory / Data110C .xlsx ’;
14 data = readtable (Dataset ,’ReadVariableNames ’,false );
15
16 num_curves = width (data) / 2; % Number of curves
17
18 for i = 1: num_curves
19 x_data (:,i) = log10 (data {1: limit_value , 2*i -1});
20 y_data (:,i) = log10 (data {1: limit_value , 2*i});
21 end

To determine the aging shift factors, the horizontal and vertical
shifts are computed by minimizing the RMS error between the
reference curve and the other test curves.
The reference curve is taken as the first curve in the dataset
(with the lowest aging time). The RMS error function is defined
later for horizontal and vertical shifts, and the ‘fminsearch’
function is used to minimize the error and find the optimal shift
values.

23 %% RMS Error Minimization
24 a_T_o_store = zeros (1, num_curves -1);
25 a_T_v_store = zeros (1, num_curves -1);
26 log_t_e = log10 ([5/8 5/4 5/2 5 10 20] ’);
27
28 options = optimset (’MaxFunEvals ’, 10000 , ’MaxIter ’, 10000) ;
29
30 % Reference curve ( first one)
31 x_ref = x_data (: ,1);
32 y_ref = y_data (: ,1);
33
34 % Shift Factor Calculation
35 for j = 2: num_curves
36 % Test curve
37 x_test = x_data (:,j);
38 y_test = y_data (:,j);
39
40 % Definition of RMS error function
41 rms_error_o = @( a_T_o ) compute_rms_error_o (a_T_o , x_ref ,

x_test );
42 rms_error_v = @( a_T_v ) compute_rms_error_v (a_T_v , y_ref ,

y_test );
43
44 % Initial guess for a_T
45 initial_guess = 5;
46
47 % Minimize the RMS error with custom options

48 optimal_a_T_horizontal = fminsearch ( rms_error_o ,
initial_guess , options );

49 optimal_a_T_vertical = fminsearch ( rms_error_v ,
initial_guess , options );

50 a_T_o_store (:,j -1) = optimal_a_T_horizontal ;
51 a_T_v_store (:,j -1) = optimal_a_T_vertical ;
52
53 % Output
54 disp ([ ’Optimal a_T between reference curve 1 and curve ’,

num2str (j),’ is: ’, num2str ( optimal_a_T_horizontal )])
;

55 end

For horizontal shifts ao
T , the shifted test curve

T 1
j “ pxshifted,j,test,jq

is given by:

xshifted,j “ xtest,j ` ao
T

The RMS error for horizontal alignment is defined as:

RMSo pao
T q “

g

f

f

e

1
n

n
ÿ

i“1

rxrefpiq ´ xshifted,jpiqs
2

In the same way, for the vertical shift:

T 1
j “ pxtest,j , yshifted,jq

yshifted,j “ ytest,j ` av
T

RMSv pav
T q “

g

f

f

e

1
n

n
ÿ

i“1

ryrefpiq ´ yshifted,jpiqs
2

The optimal shift factors are determined by minimizing the
respective RMS errors:

ao
T “ min

ao
T

RMSo pao
T q

av
T “ min

av
T

RMSv pav
T q

This is achieved numerically using the Nelder-Mead
optimization algorithm, implemented in MATLAB as
‘fminsearch’.

After computing the aging shift factors, the shift
rate is determined by fitting the horizontal shift factors
(‘a_T_o_store’) to a linear regression model using ‘poly1’ (a
linear polynomial). The negative slope of the regression provides
the shift rate for each curve.

57 % Fit data to a linear regression model
58 regression = fit(log_t_e , ( a_T_o_store )’, ’poly1 ’);
59 shift_rate = - regression .p1 * ones( length ( log_t_e ));

Three figures are generated to visualize the results (Section 3.2).
The first figure shows the shifted test curves, with the reference
curve and shifted curves overlaid. The second figure shows the
aging shift factors as a function of time, and the third figure
illustrates the shift rate.

61 %% Figure 1 - Shifted Curves
62 figure (1);
63 hold on;
64 set(gcf , ’Position ’, [10 , 220 , 700 , 500]) ;
65
66 % Plot - Reference curve
67 plot ( x_data (: ,1) , y_data (: ,1) , ’*r’, ’DisplayName ’, ’Reference

Curve ’, ...
68 ’MarkerSize ’, 8, ’LineWidth ’, 1);
69
70 % Plot - Shifted curves
71 for k = 1:( num_curves -1)
72 % Plot the shifted test curves
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73 plot ( x_data (:,k+1) - a_T_o_store (1,k), y_data (:,k+1) -
a_T_v_store (1,k), ...

74 ’LineWidth ’, 1.5 , ’DisplayName ’, [’Shifted Curve ’
, num2str (k+1) ]);

75 end
76
77 xlabel (’log(t)’);
78 ylabel (’Log Stress ’);
79 title_srt = sprintf (’Shifted Data (%s)’, title_setup );
80 title ( title_srt );
81 legend (’show ’, ’Location ’, ’best ’);
82 grid on;
83 hold off;
84
85 %% Figure 2 - a_T_o_store vs log_t_e
86 figure (2);
87 hold on;
88 set(gcf , ’Position ’, [400 , 320 , 600 , 430]) ;
89
90 plot (log_t_e , a_T_o_store , ’k.’, ’LineWidth ’, 1.5 , ’MarkerSize

’, 20, ...
91 ’DisplayName ’, ’Shift Factors ( Horizontal )’);
92
93 title_srt2 = sprintf (’Shift Factors (%s)’, title_setup );
94 title ( title_srt2 );
95 xlabel (’log(t)’);
96 ylabel (’Shift Factors (a_T)’);
97 grid on;
98 hold off;
99

100 %% Figure 3 - shift_rate vs log_t_e
101 figure (3);
102 hold on;
103 set(gcf , ’Position ’, [900 , 320 , 600 , 430]) ;
104
105 plot (log_t_e , shift_rate , ’g.’, ’LineWidth ’, 1.5 , ’MarkerSize ’

, 20, ...
106 ’DisplayName ’, ’Shift Rate ( Horizontal )’);
107
108 title_srt3 = sprintf (’Shift Rates (%s)’, title_setup );
109 title ( title_srt3 );
110 xlabel (’log(t)’);
111 ylabel (’Shift Rate ’);
112 grid on;
113 hold off;

As discussed previously, the RMS error function is defined at
the end of the script as follows:

115 %% Function definition
116 function error = compute_rms_error_v (a_T_v ,y_ref , y_test )
117 % Shift x_data by a_T
118 shifted_y = y_ref + a_T_v ;
119
120 % Compute the RMS error
121 error = sqrt ( mean (( shifted_y - y_test ).^2));
122 end
123 function error = compute_rms_error_o (a_T_o ,x_ref , x_test )
124 % Shift x_data by a_T
125 shifted_x = x_ref + a_T_o ;
126
127 % Compute the RMS error
128 error = sqrt ( mean (( shifted_x - x_test ).^2));
129 end

2.3 Relationship between Creep and Stress Relaxation

The goal of this script is to calculate the theoretical creep
compliance Dptq from experimentally measured stress relaxation
modulus Eptq using a mathematical relationship derived from
viscoelastic theory.

The script simply starts by clearing the workspace,
initializing variables and data loading.

1 %% Luigi Casagrande
2 clc;
3 clear ;
4 close all;
5
6 limit_value = 20;
7 title_setup = ’120˝ C’;

8
9 x_data = zeros ( limit_value ,7);

10 y_data = zeros ( limit_value ,7);
11 x_data_c = zeros ( limit_value ,7);
12 y_data_c = zeros ( limit_value ,7);
13 D_t= zeros ( limit_value ,7);
14
15 %% Load DataSet
16 Dataset_C = ’ >.. directory / Data120C .xlsx ’;
17 data_compliance = readtable (Dataset_C ,’ReadVariableNames ’,

false );
18 Dataset_M = ’ >.. directory / Data120M .xlsx ’;
19 data_modulus = readtable (Dataset_M ,’ReadVariableNames ’,false );
20
21 num_curves = width ( data_modulus ) / 2; % Number of curves
22 coeffs = zeros (3, num_curves );
23
24 for i = 1: num_curves
25 x_data (:,i) = data_modulus {1: limit_value , 2*i -1};
26 y_data (:,i) = data_modulus {1: limit_value , 2*i};
27 end
28 for i = 1: num_curves
29 x_data_c (:,i) = data_compliance {1: limit_value , 2*i -1};
30 y_data_c (:,i) = data_compliance {1: limit_value , 2*i};
31 end

The stress relaxation modulus data for each curve is fitted to a
quadratic polynomial:

Eptq “ p1t2
` p2t ` p3

This is done using MATLAB’s ‘fit()’ function with a second-
order polynomial (‘poly2’). The coefficients p1, p2, and p3 are
stored in the matrix ‘coeffs’.

33 x_in = x_data ;
34 y_in = y_data ;
35
36 %% Fit the data
37 for j = 1: num_curves
38 x_cf = x_in (:,j);
39 y_cf = y_in (:,j);
40 regression = fit(x_cf ,y_cf ,’poly2 ’);
41 coeffs (:,j) = [ regression .p1 , regression .p2 , regression .p3 ];
42 end

Using viscoelastic theory, the Laplace transform relationship
between modulus and compliance is:

Dpsq “
1

s2 ¨ Epsq

where Epsq is the Laplace transform of Eptq. For each curve,
the modulus Eptq is defined symbolically using the polynomial
coefficients. The script computes the Laplace transform Epsq,
derives Dpsq using the above formula, and applies the inverse
Laplace transform to find Dptq.

44 % Laplace transformation
45 for k = 1: num_curves
46 syms x s
47
48 % Define the creep compliance polynomial function
49 creep = coeffs (1,k)*x.^2 + coeffs (2,k)*x + coeffs (3,k);
50
51 % Laplace transform of creep
52 E_laplace = laplace (creep ,x,s);
53
54 % Inverse Laplace relationship
55 D_laplace = (1/(( s.^2)* E_laplace ));
56 D_t_sym = ilaplace (D_laplace ,s,x);
57
58 % Substitute x_in values into D(t) to get the creep

compliance over time
59 D_t_vals = double (subs(D_t_sym ,x,x_in (:,k)));
60 D_t (:,k) = D_t_vals ;
61 end

The computed creep compliance Dptq is compared with
experimental creep compliance data Dexpptq. The plot visualizes
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both data sets to assess their agreement. The x-axis uses a
logarithmic scale to better represent the time range.

63 % Reference creep data for comparison
64 x_ref = x_data_c (: ,1);
65 y_ref = y_data_c (: ,1);
66
67 %% Plot
68 figure (1);
69 hold on;
70 set(gcf , ’Position ’, [300 , 320 , 700 , 450]) ;
71 plot (x_in (:, 1) , D_t (:, 1) , ’r.’, ’MarkerSize ’, 25, ’LineWidth

’, ...
72 1.5 , ’DisplayName ’, ’Computed Creep Compliance ’);
73 plot (x_ref , y_ref , ’gx ’, ’MarkerSize ’, 10, ’LineWidth ’, 1.5 ,

...
74 ’DisplayName ’, ’Experimental Creep Compliance ’);
75
76 set(gca , ’XScale ’, ’log ’);
77 grid on;
78 xlabel (’Time [s]’);
79 ylabel (’Creep Compliance [Pa ^{ -1}] ’);
80 title_srt = sprintf (’Creep Compliance - Stress Relaxation

Conversion (%s)’, title_setup );
81 title (title_srt , ’FontSize ’, 13);
82 legend (’show ’, ’Location ’, ’northwest ’);
83
84 hold off;

Again, as before, the results for this task are analysis in
Section 3.3.

2.4 Long-term Nonisothermal Physical Aging

The modeling process starts with initializing arrays to store the
variables, experimental data, and computed results.

6 x_data_noniso = zeros (7 ,1);
7 y_data_noniso = zeros (7 ,1);
8 x_data_iso = zeros (7 ,1);
9 y_data_iso = zeros (7 ,1);

10
11 t_int =( linspace (1 ,50 ,1000)) ’;
12 lambda_iso = zeros ( length ( t_int ) ,1);
13 lambda_noniso = zeros ( length ( t_int ) ,1);
14 D_t_noniso = zeros ( length ( t_int ) ,1);
15 D_t_iso = zeros ( length ( t_int ) ,1);
16
17 tau = 0.4425; % hr
18 D_0 = 0.460; % GPa
19 beta = 0.417;
20 t0 = 0.5;
21
22 %% Load DataSet
23 Dataset_noniso = ’ >.. directory / Multi_T_step .csv ’;
24 data_noniso = readtable ( Dataset_noniso ,’ReadVariableNames ’,

false );
25
26 % First curve from " Multi step " graph (27 -73 -27 -73)
27 for i = 3:9
28 x_data_noniso (i -2 ,1) = log10 ( data_noniso {i ,1});
29 y_data_noniso (i -2 ,1) = log10 ( data_noniso {i ,2});
30 end
31
32 Dataset_iso = ’ >.. directory / Single_T_step .csv ’;
33 data_iso = readtable ( Dataset_iso ,’ReadVariableNames ’,false );
34
35 % Isothermal curve from the " Single step " graph (73)
36 for i = 3:9
37 x_data_iso (i -2 ,1) = log10 ( data_iso {i ,7});
38 y_data_iso (i -2 ,1) = log10 ( data_iso {i ,8});
39 end

Next, a linear regression is performed on the isothermal data
representing the shift factor and rate using the ‘fit()’ function
with the ‘poly1’ option for a first-degree polynomial fit:

y “ p1x ` p2

The shift rate, µiso, is determined as the negative of the slope
of the linear fit:

µiso “ ´p1

Subsequently, the shift factor, aging parameter, and creep
compliance are calculated using the formulas outlined in
Section 1.

41 %% Regression for Isothermal Shift Factor / Rate
42 fitting_iso = fit( x_data_iso , y_data_iso ,’poly1 ’);
43 coeffs_iso = [ fitting_iso .p1 fitting_iso .p2 ];
44 a_t_iso = coeffs_iso (1 ,1) .*( x_data_iso ) + coeffs_iso (1 ,2);
45
46 shift_rate_iso = - coeffs_iso (1 ,1);
47 a_u_iso_int = @(x) (( t0)./( t0 + x)).^( shift_rate_iso );
48
49 for i = 1: length ( t_int )
50 lambda_iso (i ,1) = integral ( a_u_iso_int ,0, t_int (i ,1));
51 D_t_iso (i ,1) = D_0 * exp (( lambda_iso (i ,1) ./ tau).^ beta );
52 end

Simultaneously, a quadratic regression is performed on the
nonisothermal data:

y “ p1x2
` p2x ` p3

The shift rate is again determined as the negative of the first
derivative of the fitted polynomial:

µnonisopxq “ ´
B log aepxq

B log x
“ ´ p2p1x ` p2q

The shift factor, aging parameter, and creep compliance are then
calculated using the formulas already presented in Section 1:

anoniso “

ˆ

t0

t0 ` x

˙´p2p1x`p2q

λnoniso “

ż t

0
anoniso Dnoniso “ D0 ¨ exp

ˆ

λnoniso
τ

˙β

The resulting script for the nonisothermal analysis is as follows:
54 %% Regression for Nonisothermal Shift Factor / Rate
55 fitting_noniso = fit( x_data_noniso , y_data_noniso ,’poly2 ’);
56 coeffs_noniso = [ fitting_noniso .p1 , fitting_noniso .p2 ,

fitting_noniso .p3 ];
57 a_t_noniso = ( coeffs_noniso (1 ,1) *( x_data_noniso ).^2+

coeffs_noniso (1 ,2)* x_data_noniso + coeffs_noniso (1 ,3));
58
59 shift_rate_noniso = - (2.* coeffs_noniso (1 ,1) .* x_data_noniso +

coeffs_noniso (1 ,2));
60 a_u_noniso = @(x) (( t0)./( t0+x)).^( -2.* coeffs_noniso (1 ,1) .*x -

coeffs_noniso (1 ,2));
61
62 for j = 1: length ( t_int )
63 lambda_noniso (j ,1) = integral ( a_u_noniso ,0, t_int (j ,1));
64 D_t_noniso (j ,1) = D_0 * exp (( lambda_noniso (j ,1) ./ tau).^

beta );
65 end

As usual, the results were plotted to visualize the findings; an
example of the plot is shown below.

133 % Effective time vs. Real time
134 figure (6);
135 set(gcf , ’Position ’, [510 , 320 , 600 , 430]) ;
136 hold on;
137 plot (t_int , lambda_iso , ’b-’, ’LineWidth ’, 2.5 , ’DisplayName ’,

’Isothermal ’);
138 plot (t_int , lambda_noniso , ’r-’, ’LineWidth ’, 2.5 , ’

DisplayName ’, ’Nonisothermal ’);
139 title (’Effective time vs. Real time ’, ’FontSize ’, 13);
140 xlabel (’Real Time [h]’);
141 ylabel (’\ lambda ’);
142 legend (’show ’, ’Location ’, ’northwest ’);
143 grid on;
144 hold off;
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3 Results

From the MATLAB script provided in Section 2, these are
examples of the resulting data and figures obtained from the
simulation.

3.1 Data Extraction

Creep Compliance graphs illustrates the material’s compliance
behavior at various aging times and temperatures, revealing
how it deforms over time under constant stress. It allows for an
assessment of the material’s long-term strain behavior under
elevated temperatures.

Stress Relaxation Modulus graphs shows the stress relaxation
characteristics at different aging times and temperatures. It
demonstrates how the material’s internal stresses relax over
time, highlighting its stiffness and recovery properties under
thermal exposure.

The third graphs presents the aging shift factors obtained from
short-term creep tests, in particular for a single jump and multi-
temperature jumps. These factors are critical for predicting long-
term material behavior, especially in non-isothermal conditions.

3.2 Characterization of Isothermal Physical Aging

The aging shift factors and shift rates for all six datasets
(three temperatures and two datasets, compliance and modulus)
were determined using the RMS error minimization technique
described in Section 2.2.

The Table 1 list the calculated aging shift factors and
corresponding shift rates for each dataset.
For the six curves, three graphs each were obtained:

‚ Shifted Data (log Stress vs. log Time)
This plot demonstrates the alignment of the aging curves
after applying the calculated horizontal and vertical shift
factors.
The reference curve (lowest aging time) was chosen as the
anchor, and subsequent curves were shifted horizontally and
vertically to minimize the RMS error.

‚ Aging Shift Factors (log Time vs. Shift Factor) This plot
displays the calculated aging shift factors as a function of
aging time in a log-log space.
The linear trend observed in each dataset reflects the
logarithmic dependence of aging shift factors on time,
consistent with the theoretical framework.

‚ Aging Shift Rates (log Time vs. Shift Rate) The aging
shift rates, derived from the slope of the shift factor vs. log
aging time, are plotted in this figure.
These rates indicate the speed at which the material’s
properties evolve with aging.
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Table 1. Aging shift factors and aging shift rate along the x-axis for the six datasets analyzed. The curves have been renamed, for simplicity,
according to the temperature they refer to, with “C” indicating the creep compliance curve and “M” indicating the stress relaxation modulus.

Shift Factor Shift Rate

Plot Curves 1-2 Curves 1-3 Curves 1-4 Curves 1-5 Curves 1-6 Curves 1-7 along x

110C 0.1914 0.4429 0.7299 1.0111 1.3061 1.6119 -0.9467

110M 0.3185 0.6229 0.9227 1.2418 1.4899 1.7681 -0.9651

120C 0.1703 0.4385 0.7239 1.0155 1.3109 1.6150 -0.9617

120M 0.3210 0.6102 0.9187 1.1896 1.5174 1.8102 -0.9912

130C 0.1371 0.3052 0.5839 0.8471 1.1337 1.4436 -0.8809

130M 0.3013 0.5869 0.9206 1.1969 1.5039 1.8007 -0.9989

3.2.1 Creep Compliance at 110°C

This figures demonstrates the alignment of the aging curves for
creep compliance after applying the necessary horizontal shifts.
The shift factor at 110°C is also shown.

3.2.2 Creep Compliance at 120°C

This figures demonstrates the alignment of the aging curves for
creep compliance after applying the necessary horizontal shifts.
The shift factor at 120°C is also shown.
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3.2.3 Creep Compliance at 130°C

This figures demonstrates the alignment of the aging curves for
creep compliance after applying the necessary horizontal shifts.
The shift factor at 130°C is also shown.

3.2.4 Stress Relaxation Modulus at 110°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal
shifts. The shift factor at 110°C is also shown.

3.2.5 Stress Relaxation Modulus at 120°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal
shifts. The shift factor at 120°C is also shown.

3.2.6 Stress Relaxation Modulus at 130°C

This figures demonstrates the alignment of the aging curves for
stress relaxation modulus after applying the necessary horizontal
shifts. The shift factor at 130°C is also shown.
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3.3 Relationship between Creep and Stress Relaxation

From the script presented in Section 2.3, the graphs obtained
for 120°C is shown below.
This graph compare the computed creep compliance, derived
from the stress relaxation modulus data, with the experimental
creep compliance.

3.4 Long-term Nonisothermal Physical Aging

The shift rate for both conditions is shown, illustrating the rate
at which the material undergoes aging under different thermal
regimes.

The fitted shift factors for isothermal and nonisothermal aging
are also provided, highlighting the distinct behaviors of the
material over time.

The creep compliance for both isothermal and nonisothermal
conditions is plotted in a log-log scale, allowing for an assessment
of the material’s time-dependent viscoelastic properties.

Finally, the comparison between effective time and real time
for both isothermal and nonisothermal conditions highlights the
influence of the aging process on the material’s behavior with
respect to the time scale under varying thermal conditions.
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4 Discussion & Conclusion

4.1 Characterization of Isothermal Physical Aging

The results presented in Section 3.2 (Table 1) confirm the
validity of the isothermal physical aging characterization method,
which was applied to both creep compliance and stress relaxation
modulus data sets. The aging shift factors, determined by
minimizing the root-mean-square (RMS) error upon horizontal
shifting, show that the curves for different aging times effectively
overlap when shifted. This confirms that the aging shift factors
provide a consistent way to describe the changes in the material’s
behavior due to aging, demonstrating the robustness of the
approach.

For both the creep compliance Dptq and the stress
relaxation modulus Gptq, the aging shift factors at plotted
against the logarithm of time exhibit a linear relationship,
expressed mathematically as:

logpatq “ m ¨ logptq ` c

where m is the slope (shift rate) and c is the intercept. This
indicates that the shift factor scales predictably with the
logarithmic aging time, which is a hallmark of physical aging in
polymer materials.

The shift factor at is fundamentally connected to molecular
mobility, representing how the effective time scale of molecular
relaxation changes as the material undergoes aging. The
observed linear dependence suggests that the underlying physical
processes, such as molecular rearrangement and redistribution of
free volume, occur at a consistent rate, leading to a uniform time-
scale transformation. This is consistent with the principles of
physical aging, where material properties evolve logarithmically
with time.
Additionally, when the shift rate

µ “ ´
B logpatq

B logptq

is calculated and plotted against logptq, it appears as a horizontal
line:

µ “ constant

This constant behavior implies that the aging process does not
deviate over time, reinforcing the notion of a stable and uniform
transformation of the material’s time scales.

4.2 Relationship between Creep and Stress Relaxation

The goal was to convert the stress relaxation modulus data
at 120°C to creep compliance using the established theoretical
relationship between stress relaxation and creep compliance.
This was achieved by applying the Laplace transform to the
stress relaxation modulus and then obtaining the corresponding
creep compliance as a function of time (as detailed in
Section 2.3).

While the calculated creep compliance results show a similar
trend as the experimental creep data, the curves slightly diverge,
with the calculated creep compliance starting to flatten out at
both higher and lower times.
This discrepancy can be attributed to several factors related
to the underlying physical processes governing stress relaxation
and creep in polymers:

a. Finite Time Effects: Experimental data may reflect
prolonged molecular rearrangements and stress relaxation
over time, which are not fully captured in the stress
relaxation modulus data. The calculated curve’s flattening
may indicate a faster equilibrium state than observed
experimentally.

b. Viscoelastic Behavior and Aging Effects: Time-dependent
phenomena like physical aging or time-temperature
superposition can alter the relaxation modulus over time,
causing deviations in creep compliance predictions. These
effects are often not included in simplified theoretical
models.

c. Mathematical Approximation Limitations: The Laplace
transform relies on approximations, such as assuming
constant or ideal relaxation times, which may not accurately
represent the viscoelastic response of polymers. This
simplification could explain the observed flattening in the
calculated compliance.

4.3 Long-term Nonisothermal Physical Aging

The fit for the isothermal model was quite accurate, confirming
that under constant temperature conditions, the aging shift
factor does not change with time, but instead behaves in a
manner consistent with the Kohlrausch function parameters.
The consistency of the shift factor in the isothermal case makes
sense, as the material experiences the same temperature, so
the rate of aging does not need to adjust for temperature
fluctuations.

In contrast, the nonisothermal prediction involved the
application of a temperature-dependent aging shift factor. In the
graphs shown in Section 3.4, as the material undergoes thermal
cycling, the shift factor adjusts in a linear fashion, as opposed to
the constant behavior in the isothermal case. This is because, in
nonisothermal conditions, the aging of the material is influenced
not just by the cumulative time spent at each temperature, but
also by the transitions between temperatures, leading to a more
complex and temperature-sensitive shift factor.

The creep compliance was analyzed in log-log space for
both isothermal and nonisothermal conditions:

‚ Isothermal Case: The creep compliance under isothermal
conditions exhibited the expected growing trend, which is
a characteristic of viscoelastic materials experiencing time-
dependent deformation. This growing behavior reflects the
material’s continued response to stress over time, with the
compliance increasing as the material undergoes more creep
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deformation. This is consistent with the idea that, at constant
temperature, the material’s response follows the usual time-
dependent creep pattern, where compliance increases as time
progresses.

‚ Nonisothermal Case: In the nonisothermal case, the creep
compliance initially increased in a manner similar to the
isothermal case, but then it reached a plateau after a certain
period. This plateau suggests that the creep compliance was
limited by the material’s temperature cycling.
A more careful investigation reveals that the issue stems from
the fitting method used in MATLAB’s ‘poly2’ interpolation,
specifically with the decay of the shift function au. The
rapid decay of au is due to an overfitted exponential decay
term, causing au to decay too quickly. As a result, when au

is integrated to compute the effective time λ, the integral
plateaus, as the value of au reaches zero after a certain point
(see the Figure below).
This behavior is not a physical limitation of the material but
a mathematical issue arising from the fitting procedure. The
rapid decay of au is a result of the specific data and the
chosen fitting model, not the material’s intrinsic properties.
In reality, the creep compliance in a nonisothermal system
should grow exponentially at first, influenced by increasing
temperature, but should eventually reach a steady-state creep
rate where the compliance stabilizes, due to the balance
between deformation and recovery mechanisms (which are
temperature-dependent).
The plateau observed in λ is simply a consequence of the
incorrect behavior of au under the current fitting model.

The second-order polynomial fit was chosen because it provides
a smoother, less extreme variation that avoids the rapid decays
or blow-ups associated with exponential functions, allowing for
more stable integration, compared to an exponential one.

The relationship between effective time and real time was
also explored to better understand the material’s creep response
under both isothermal and nonisothermal conditions.

‚ Isothermal Case: In the isothermal scenario, the relationship
between real time and effective time follows the expected
trend, with a logarithmic-like increase.
This logarithmic behavior arises because the aging shift
factor is a function of time, and in isothermal conditions,
the material’s response to stress becomes progressively slower
as time increases.

‚ Nonisothermal Case: In contrast, for the nonisothermal case,
the effective time initially grows as expected but then quickly
plateaus. This rapid leveling off of effective time is definitely
due to the same issue encountered in the creep compliance
fit – namely, the inappropriate decay of the aging shift factor
in the fitting procedure.
The overestimated decay rate of au leads to an overestimated
aging shift factor, causing the effective time to quickly
stabilize. In theory, the effective time should continue
increasing as the material responds to the varying temperature
over time, but this fast plateau prevents a true reflection of
the temperature cycling’s impact on the material.

For nonisothermal conditions, as the material undergoes cyclic
temperature changes, the effective time should eventually closely
align with real time. This is because, at long times, the effect
of previous thermal history should become negligible, and the
material would reach a steady-state deformation rate regardless
of the specific thermal history.
Hence, while the effective time may initially deviate due to
temperature fluctuations, it should eventually coincide with the
real time in long-term creep.
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Appendix A: DATA EXTRACTION

1 %% Luigi Casagrande
2 clc;
3 clear ;
4 close all;
5
6 temps = [110 , 120 , 130];
7 aging_times = [5/16 , 5/8 , 5/4 , 5/2 , 5, 10, 20];
8
9 %% 110 C Dataset

10
11 % Read the CSV file
12 Dataset110C = ’ >.. directory /110 C_Dataset .csv ’;
13 data110C = readtable ( Dataset110C ,’ReadVariableNames ’,false );
14
15 numPairs = width ( data110C ) / 2; % Number of (X,Y) pairs
16
17 for i = 1: numPairs
18 % Extract X and Y columns for the current pair
19 X = data110C {:, 2*i -1}; % X column ( odd index )
20 Y = data110C {:, 2*i}; % Y column ( even index )
21
22 % Sort X and re - order Y accordingly
23 [X_sorted , idx] = sort (X);
24 Y_sorted = Y(idx);
25
26 % Store the sorted data back into the table
27 data110C {:, 2*i -1} = X_sorted ;
28 data110C {:, 2*i} = Y_sorted ;
29 end
30
31 writetable (data110C , ’DataSet / Data110C .xlsx ’, ’

WriteVariableNames ’, false );
32
33 % Extract datasets
34 % ’5/16 hr ’ data
35 x1110C = data110C {1:20 , 1};
36 y1110C = data110C {1:20 , 2};
37 % ’5/8 hr ’ data
38 x2110C = data110C {1: end , 3};
39 y2110C = data110C {1: end , 4};
40 % ’5/4 hr ’ data
41 x3110C = data110C {1: end , 5};
42 y3110C = data110C {1: end , 6};
43 % ’5/2 hr ’ data
44 x4110C = data110C {1: end , 7};
45 y4110C = data110C {1: end , 8};
46 % ’5 hr ’ data
47 x5110C = data110C {1: end , 9};
48 y5110C = data110C {1: end , 10};
49 % ’10 hr ’ data
50 x6110C = data110C {1: end , 11};
51 y6110C = data110C {1: end , 12};
52 % ’20 hr ’ data
53 x7110C = data110C {1: end , 13};
54 y7110C = data110C {1: end , 14};
55
56 % Plot Creation
57 figure (1);
58 set(gcf , ’Position ’, [10 , 320 , 600 , 430]) ; % Adjust the size &

position
59 set(gca , ’XScale ’, ’log ’); % Logaritmic x- axis
60 hold on;
61
62 % Plot each dataset
63 plot (x1110C , y1110C , ’-s’, ’DisplayName ’, ’5/16 hr ’, ’

LineWidth ’, 1.2 , ’MarkerSize ’, 8);
64 plot (x2110C , y2110C , ’-o’, ’DisplayName ’, ’5/8 hr ’, ’LineWidth

’, 1.2 , ’MarkerSize ’, 8);
65 plot (x3110C , y3110C , ’-p’, ’DisplayName ’, ’5/4 hr ’, ’LineWidth

’, 1.2 , ’MarkerSize ’, 8);
66 plot (x4110C , y4110C , ’-v’, ’DisplayName ’, ’5/2 hr ’, ’LineWidth

’, 1.2 , ’MarkerSize ’, 8);
67 plot (x5110C , y5110C , ’-d’, ’DisplayName ’, ’5 hr ’, ’LineWidth ’,

1.2 , ’MarkerSize ’, 8);
68 plot (x6110C , y6110C , ’ -^’, ’DisplayName ’, ’10 hr ’, ’LineWidth ’

, 1.2 , ’MarkerSize ’, 8);
69 plot (x7110C , y7110C , ’ -*’, ’DisplayName ’, ’20 hr ’, ’LineWidth ’

, 1.2 , ’MarkerSize ’, 8);
70
71 % Customize the plot
72 xlabel (’Load Time [s]’);
73 ylabel (’Compliance [1/ Gpa]’);

74 xlim ([1 , 1e4 ]); % X- axis range
75 ylim ([0.55 , 0.75]) ; % Y- axis range
76
77 legend (’show ’, ’Location ’, ’northwest ’);
78 grid on;
79 title (’Compliance - Load Time at 110˝ C’, ’FontSize ’, 13);
80 legend ;
81 hold off;
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